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NON-METALLIC
TRANSDUCER MOUNTING BRACKETS
(AN/BQQ-5/6 SPHERICAL ARRAY TRANSDUCERS)

INTRODUCTION

Spherical array sonar transducers require mounting brackets for installation
in the array. Historically, metallic brackets have been used. Past metallic materials
used in the brackets have included carbon steel, stainless steel, and aluminum
bronze (Al-Br). Recent AN/BQQ-5 sonar dome inspections have revealed extensive
corrosion occurring within two years of installing new mounting brackets. Most
metals are subject to corrosion under certain conditions. The seawater
environment found in submarine sonar domes is highly corrosive because of
varying water conditions, oxygen content, pH levels and the existence of
electrochemical potentials. Corrosion in transducer mounting brackets has been
evident since the initial installations of spherical arrays. Attempts to control the
dome’s interior environment have been unsuccessful. Failure of transducer
mounting hardware has had a significant impact on the fleet in terms of
maintenance costs and reduced systems availability.

A solution to sonar bracket corrosion is to avoid using metallic materials.
Recent test results of connector backshells manufactured with reinforced plastics
have shown high strengths and long-life in seawater environments [1-7]. A non-
metallic bracket design using materials similar to the reinforced plastic connector
backshells could provide long-life transducer brackets needed to reduce fleet
maintenance costs and to improve system availability. In addition, by
demonstrating that non-metallic engineering materials satisfy the spherical array
transducer bracket requirements a number of other fleet transducer bracket designs,
such as the DT-276 transducer bracket in the AN/BQR-7 array, can be accomplished
using the materials developed for the spherical array, thereby minimizing total
design costs.
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OBJECTIVES

The objectives of this engineering improvement program are to determine if
a non-metallic transducer mounting bracket material can meet the performance
requirements for the AN/BQQ-5/6 spherical array transducers and thus eliminate
bracket corrosion problems, extend bracket service life beyond that of the transducer,
and significantly reduce array maintenance and life-cycle costs.

APPROACH

The normetallic bracket engineering improvement effort was divided into six
major tasks:

Design Requirements
Material Selection
Material Testing

Finite Element Analysis
Bracket Mold Design
First-Article Testing

Each of these tasks is described in the following sections.
DESIGN REQUIREMENTS

The bracket design requirements task has concentrated on reviewing
available specifications and drawings for the current TR-317 brackets and
characterizing the stress history profile of the brackets in service. The following
information has been obtained from the sources noted concerning specifications for
performance requirements of the TR-317 mounting brackets:

1. Explosive shock stress exposure for water-backed systems is summarized
as follows:

Peak over pressure: 25.2 MPa (3648 psi)

Maximum velocity: 4.3 to 10.4 m/s (14 to 34 ft/s)
Average acceleration to peak velocity: 1060 g to 8194 g
Applied force: 2.4 to 18.2 kN (530 to 4097 Ib)

The range in exposures is the result of device orientation during explosive
shock and the higher values represent. the pertinent requirements for
bracket design.

2. The in-air mass of the TR-317 transducer was found to be a maximum of
25.7 kg (56.7 Ibm) for a flooded transducer.

3. TR-317 bracket design drawings were supplied by Crane Division, Naval
Surface Warfare Center.




NRL Memorandum Report 6969

Drawing Number Description

88594-001916-001 Shock Support Assembly Standard
TR-155( )/BQ Transducer

88594-001916-002 Shock Support Assembly Special
TR-155()/BQ Transducer

88594-001916-003 Standard Mounting Bracket Subassembly

88594-001916-004 Special Mounting Bracket Subassembly

4. Data to identify the strength requirements of the brzckets during explcsive
shock have not been found. The rationale for tensile strength
specifications for the brackets was evidently based on quality control
procedures for acceptable castings of the aluminum-bronze alloy and not
for ultimate strength needed to support the transducer in normal service
or in explosive shock scenarios. If the casting exhibited the specified
tensile strength and elongation, it was assumed that the bracket would be
ductile enough not to crack during explosive shock. The bracket is
required to sustain plastic deformatior during explosive shock.

5. Torque requirements for installing brackets is stated in ASW Test
No. 426-2-1721 Rev. C as:

* Bracket installation nut: 4.5 £ 0.57 N-m (40 £ 5 in-1b)
¢ Transducer securing nut: 19.6 to 22.3 N-m (173 to 197 in-Ib)

In addition to reviewing the fleet’'s documentation on bracket strength
requirements, the mission profile for the TR-317 transducer was also reviewed and
those items which impact bracket design are summarized. The mission profile for
the TR-317 brackets is taken from normal SSN service exposures in the sonar dome.
Exposures that significantly affected material selection and which wereused for
material properties screening include:

1. Temperature in air:

¢ Maximum: 70°C for 450 h/yr
¢ Minimum: -30°C for 180 h/yr

2. Temperature in water:
¢ Maximum: 32°C for 960 h/yr

¢ Minimum: -2°C for 960 h/yr
e Longterm: 25°C for 6840 h/yr
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3. Applicable Vibration Specification:
o -STD 167-1

This report uses both English and S.I. units. The S.I. units are used in the text
and, whenever possible, in figures and tables. However, because the engineering
design drawings, specifications, and references provided to this project use English
units, some test and analysis results are presented in English units.

MATERIAL SELECTION

Material selection has centered on candidate non-metallic bracket materials
and pultruded-rod reinforcement materials. The selection process for each of these
material types is discussed in the following sections.

Non-Metallic Bracket Materials

The initial bracket material selection method consisted of performing a
survey of the general field of non-metallic materials. Textbooks, trade journals,
material databases, and manufacturers’ properties data were reviewed to identify
categories of materials appropriate for use in sonar bracket applications. Table 1 lists
these categories of non-metallic materials, the manufacturers’ names, and
important material properties.

A more restrictive material selection method was then used to narrow the
field of prospective non-metallic material candidates. The following selection
criteria was used to identify candidates for more extensive material testing:

1. commercially available at a reasonable cost,
2. injection moldable,

3. high tensile strength, and

4. high impact strength.

The most severe loads experienced by the brackets are due to explosive shock.
High tensile strength and high impact strength were deemed important selection
criteria if a non-metallic bracket was going to be able to survive explosive-shock
loads. In general, a material was considered to have a high tensile strength if it
exceeded 137.9 MPa (20 ksi) and to have a high impact strength if it exceeded a
notched Izod impact strength of 106.8 J/m (2 ft-Ibs/in). The last column of Table 1
shows some of the materials that were selected and the reason for rejecting the other
initial material candidates.

Table 2 provides a summary of the manufacturers’ material properties for the
candidates selected using the material selection method described above. After
discussions with the technical representatives from each of the resin system
manufacturers, it became evident that, in general, the highest tensile and impact
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strengths are achieved by using long glass fibers at high loading ratios (50% to 60%).
For this reason two additional candidate materials were added which have 60% long
glass fiber content, Verton and Celstran. Additional review of the manufacturers’
material properties data identified two other potential candidates with excellent
mechanical properties, Isoplast and Vectra A-515.

Other filler materials such as carbon, graphite, Kevlar, and mineral fillers
used in the resin systems identified in Table 2 were investigated as potential
candidates. A review of manufacturers’ data showed that no significant
improvement in tensile strength or impact strength was found in using these fillers
instead of glass fibers. In most cases, glass fibers (especially long glass fibers at high
loading ratios) showed substantially higher mechanical properties. Table 3 presents
a comparison of some selected mechanical properties of the various filler materials.

Seven non-metallic material candidates were selected for potential use in TR-
317 molded mounting brackets. Extensive material testing was performed to verify
published material properties and to determine unpublished material properties
data. All of the candidate materials were molded into TR-317 standard mounting
brackets and subjected to short-term testing and evaluation. This short-term testing,
consisting of material strength and environmental exposure tests, was used to nar-
row the candidate list to three materials for long-term testing, such as creep,
accelerated life testing (ALT), etc.

Pultruded Rod Reinforcement Materials

The incorporation of a metal rod insert into the bolt sections of the TR-317
molded bracket has been considered as a method for strengthening the bracket in
this area. However, the use of a metal reinforcing rod is counter to the goal of
producing an entirely ron-metallic bracket. Because of this restraint, the use of a
high-strength non-metallic rod was evaluated.

Non-metallic unidirectional fiber pultruded composite rods have been
available with thermoset matrix resins for a number of years. These unidirectional
fiber glass/thermoplastic rods have tensile strengths comparable to stainless steel.
The thermoplastic pultruded rod is now becoming more commercially available
with a variety of matrix/reinforcement combinations. For initial evaluation in the
thermoplastic brackets, pultruded fiberglass/nylon 6,6, and fiberglass/TP
polyurethane were evaluated as reinforcements for the bolt sections in the brackets.
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MATERIAL TESTING

Material testing was performed on the candidate non-metallic bracket
materials and the pultruded-rod bracket reinforcement materials. The results from
these tests are presented in the following sections.

Non-Metallic Bracket Materials

The non-metallic bracket material testing consisted of performing tensile,
Izod impact, ultimate toughness, water absorption, Thermal Mechanical Analysis
(TMA) and Dynamic Mechanical Analysis (DMA) tests. These tests and their results
are discussed in the following sections.

Tensile Tests

Tensile specimens for each candidate material group were obtained from the
manufacturers and tested after equilibration in the following environmental
conditions:

Condition 1: Dry/Room Temperature*

Condition 2: Dry/70°C*
Condition 3: 3.5% Salt Water/Room Temperature
Condition 4: 3.5% Salt Water/70°C

* Note: Dry for these tests is defined as not exposed to water, but conditioned to the
relative humidity level at the time of the test.

Figures 1 through 3 summarize the tensile test results. Figures 4 through 10
illustrate the results of the tensile tests performed thus far as a function of stress vs
strain. As was expected, samples pulled in the dry/room temperature condition
generally had higher ultimate tensile strengths compared to samples tested under
the other conditions, with the exception of Vectra A-515. Vectra A-515 was the only
material found to have a higher ultimate tensile strength when tested dry-hot, as
compared to dry/room temperature. The Isoplast materials and the Ultem 2300 exhib-
ited higher strengths after exposure to 70°C salt water as compared to exposure to 70°C
alone. In contrast, the nylon 6,6 samples (Verton and Celstran) showed better per-
formance in the dry-hot condition compared to the 70°C samples exposed to salt water.

Figures 1 and 2 compare the ultimate tensile strength and elongation at
rupture results for each material in the various exposure conditions. With the
exception of Verton and Vectra A-515, all of the materials tested showed a reduction
in percent elongation at rupture following exposure to either the wet-hot or dry-hot
conditions. Manufacturer supplied tensile data are notably higher than those
obtained under condition 1. The cause of this discrepancy is the technique used to
condition the samples prior to testing. The manufacturers typically mold the tensile
specimen and immediately contain it in order to isolate it from atmospheric
moisture. The specimens tested under condition 1 were conditioned at room
temperature and normal relative humidity.

11
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Fig. 4 - Stress-strain plots for Ultem 2300
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Fig. 5 - Stress-strain plots for Isoplast 101 LGF4ONAT
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Fig. 6 - Stress-strain plots for Isoplast 101 LGF6ONAT
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Fig. 7 - Stress-strain plots for Verton RF-700-10-HS
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Fig. 8 - Stress-strain plots for Verton RF-700-12-HS
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Fig. 9 — Stress-strain plots for Celstran N66G60-01-4
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Fig. 10 - Stress-strain plots for Vectra A-515
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The Isoplast materials maintained a higher percentage of tensile strength after
salt water exposure compared to the Verton and Celstran (nylon 6,6) materials.
Higher glass loading improves the dry tensile strength and appears to help preserve
higher strengths in specimen exposure to 70°C salt water. Figure 3 illustrates the
relationship between tensile modulus and percent reinforcement. All of the 60%
glass-loaded materials had a notably higher tensile modulus compared to the less
reinforced versions. Also, the nylon 6,6 materials retained significantly less tensile
modulus after the hot-wet exposure than either the Isoplast materials or Ultem
2300. Vectra A-515, which exhibited the highest ultimate toughness of the non-
metallic materials, was the only candidate to decrease in tensile modulus when
tested in the dry-hot condition compared to the dry/room temperature condition.

The wet strength retention of the materials is contrasted in Fig. 11. The
Isoplast and Ultem materials outperform the nylons, Celstran and Verton. It is
worth noting that a lower glass loading seems to improve the wet strength retention
of the Isoplast, while the higher glass loading seems to improve the wet strength
retention of the nylon 6,6 systems. This may indicate that there are two separate
primary ingression routes for moisture in the nylon 6,6 compared to the Isoplast
polyurethane. The nylon 6,6 may be more susceptible to moisture permeation into
the bulk polymer phase, while moisture penetration into the glass-resin interface
may be the predominant mechanism occurring in the polyurethane composite.

Percent Tensile Strength Retention
3.5% Sait Water/70 C vs Dry/Room temp.

110

100

8

80

Retention (%)

70

Fig. 11 - Wet-hot tensile strength retention
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Impact Strength

The injection-molded non-metallic brackets must be able to survive high
explosive-shock loads. In order for the brackets to qualify for use on board
submarines the brackets must be able to survive the MIL-5-901-D explosive-shock
test series. In fact, the highest loads experienced by the brackets are due to explosive
shock. Therefore, the impact strength or toughness of the candidate non-metallic
materials is of the utmost importance. One method of ranking a material’s impact
strength is to perform an ASTM standard Izod impact test. Another measure of a
material’s impact strength or toughness is to calculate the area under the
stress/strain curve from zero to its ultimate strength. This measurement has been
termed the ultimate toughness of the material. Both of these methods were used to
compare the relative impact strengths of the candidate non-metallic materials.

Izod Impact Testing

Notched and unnotched Izod impact tests were performed on the candidate
non-metallic materials at room temperature and at approximately 2°C. All impact
bars were dry, but exposed to a relative humidity of approximately 60%. The tests
were performed to ASTM standard D 256, Standard Test Methods for Impact
Resistance of Plastics and Electrical Insulting Materials. The Izod impact bars tested
were 6.4 cm (2.5 in) long, 1.3 cm (0.5 in) wide and 0.318 cm (0.125 in) thick. The non-
metallic materials were tested at the cold temperature (2°C) because it was believed
that these materials might become brittle at the lower temperature with a resulting
loss in impact strength. Since the brackets are exposed to a seawater environment
with a low temperature of approximately 4°C, the cold temperature tests provide a
conservative estimate of the impact strength.

Figure 12 presents a summary of the averaged test results from the Izod
impact testing of the candidate non-metallic materials and compares them to
published manufacturer’s impact strength claims. Notched impact strength results.
are more conservative than-unnotched results and are considered more
representative of the material’s behavior. A comparison of the manufacturer’s
notched room-temperature results and the tested notched room temperature results
show close agreement with the exception of the Ultem 2300 and the Vectra A-515.
Both the Ultem 2300 and the Vectra A-515 showed much higher tested impact
strengths than claimed by the manufacturer. The Vectra A-515 had the highest
tested impact strength under all conditions. Its notched room-temperature impact
strength was almost three times as high as the next highest candidate. The
difference in impact- strengths between the room temperature and cold conditions
was not noticeable for most of the materials. Only the Ultem 2300 saw a consistent
substantial reduction in its impact strength from the room temperature to cold
temperature condition.
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Although not supported by the manufacturer’s impact strength claims, the
Izod impact testing demonstrated that the Vectra A-515 clearly stood out from the
rest of the candidates as the material with the best impact resistance. The long glass
fiber materials with high loading (60%) such as the Celstran, Isoplasts, and Verton
also demonstrated good impact resistance.

Ultimate Toughness Calculations

Tensile test data were used to calculate the area under the stress/strain curve
for each of the non-metallic materials and for the Al-Br material. This area under
the stress/strain curve provides another relative measure of a material’s toughness
or impact resistance. Figure 13 presents the ultimate toughness (area under the
stress/strain curve) results for each of the non-metallic candidate materials for each
of the conditions tested and the ultimate toughness of the current Al-Br material.

The Vectra A-515 stands out with a substantially higher dry ultimate
toughness compared to the other non-metallic materials. The Vectra A-515
achieves a dry, room-temperature toughness of about 1.5 times as high as the next
closest candidate (Celstran), and has almost 80% of the toughness of the Al-Br
material. The other non-metallic materials have about the same dry, room-
temperature toughness ranging from 1.55 to 1.89 MPa (225 to 275 psi). The Vectra A-
515, Celstran 60%, and Verton 60% show good toughness retention at the dry, hot
temperature condition. Surprisingly, the Isoplast 60% did not perform well under
any of the tested conditions. This may have been caused by poor tensile test results
due to difficulty in properly clamping the highly glass-loaded Isoplast in the Instron
grips. In general, both the higher temperature and the wet soak conditions caused a
substantial reduction in the ultimate toughness of the non-metallic materials.

Water Absorption Tests

Figures 14 through 18 demonstrate the water absorption characteristics of a
selection of the reinforced thermoplastic candidate materials. The solutions used to
determine the absorption properties were 3% salt water at three temperatures; 25°C,
40°C, and 70°C. Generally, the test temperature seems to have little effect on the
equilibrium moisture content of these materials, although the rate of absorption did
increase with temperature. However, a slight increase in equilibrium water
absorption was observed between the 25°C tests and the 40°C tests.

The equilibrium water absorption values shown in Fig. 14 compare well with
the percent tensile strength retention values given in Fig. 11. The Isoplast and
Ultem materials retained more tensile strength after exposure to hot salt water.
Concurrently, the Isoplast and Ultem had equilibrium moisture absorptions only
half that of the nylon (Verton 50% long glass).
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Thermal Mechanical Analysis Results

The linear coefficient of thermal expansion (LCTE) of the candidates was
measured with the use of a DuPont model 943 thermal mechanical analyzer (TMA).
A 6.35-mm diam circular probe was used with a load of 10 g. This produced a force
of 3.1 kPa on the test specimen. The samples were heated at a rate of 10°C/minute to
195°C, cooled to room temperature under load and heated at 10°C/minute to 195°C
again. The purpose of the initial run is to remove any residual thermal stresses that
may be present. The LCTE was calculated over a temperature range from 40°C to
80°C. Additionally, the amount of shrinkage on cooling after the initial run was
noted. The data and results are shown in Figs. 19 through 27.

The TMA results presented in Fig. 19 compare the LCTE for the seven
primary non-metallic candidates. The LCTE can be viewed as a measure of the
dimensional stability of the non-metallic bracket materials as a function of
temperature.

Generally, the polyurethane Isoplast materials demonstrate a lower LCTE
than the Nylons (Celstran and Verton). Also, the expected inverse relationship
between the LCTE and the percentage glass content for both the nylon and
polyurethane materials is evident. Good thermo-dimensional stability of the
modestly reinforced Ultem 2300 (30% short-glass) was also found, considering it has
the lowest LCTE of the seven candidates tested. The LCTE of the 15% mineral filled
Vectra A-515 lies between between the nylon and polyurethane materials.

Percentage shrinkage values derived from the TMA runs are presented in
Fig. 20. A relationship between glass loading and shrinkage is not detectable in this
data. The degree of shrinkage is presumably indicative of the amount of residual
stress relieved in each material during the thermal cycle.
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Saaple: CELSTRAN 80X AUN 2 T M A File: BRA-TMAGB.S4
Size: 3.2100 am Operator: RWT
Mathod: 410R, 300 Run Date: 08/13/91 13:07
Co;nsnt: 108 LOAD, MACAROD
]
2.5+
2.0+
1
1.5
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: 80.00°C
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Teaperature (°C) T™MA V2.1A OuPont 9900
o
Fig. 21 - TMA plot for Celstran 60% long glass
Sample: ISOPLAST 104LG6F 40X RUN 2 TM A File: BRA-TMAGB.84
Size:  3.1720 mm Opsrator; ANT

Method: 10A, 300

Comment: 106 LOAD, MACRO
1.4

Run Date: 09/12/9% 16: 28

1.24

1.0+

0.8

0.6

80.00°C
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9.0 v — - 4 T y—
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Tempersture (°C) THA V2.1A DuPont 9800

Fig. 22 - TMA plot for Isoplast 40% long glass
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Sample: ISOPLAST 101L6F 80X AUN 2 T MA File: BRA-TMASS.8S
Size:  3.0080 m» Operator: RWT

Method: 30M, 300 Run Date: 08/13/9% 07:2¢
Co;-:nt: 406G L.OAD, MACRO
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Fig. 23 - TMA plot for Isoplast 60% long glass
Sample: ULTEM 2300 ARUN 2 TMA File: BRA-TMABS.96
Size: 3.1780 mm Operstor: RWT
Method: $0RA. 300 Run Date: 09/13/91 4453
Cou:nt: 106 LOAD, MACRO
3.
0.0
4
2
8 0.6
€
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Fig. 24 - TMA plot for Ultem 2300 30% glass
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VECTRA RUN 2 File: BRA-TMAGS.S2
3,1880 ma T M A Opesrator: RNT
10R, 300

Aun Dets: 09/13/9t

11: 24

cou;nt: 106 LOAD, MACRO
2.

Jimension Change (X)

Sample: VERTON RF=700-10-HS RUN 2

80.00°C
a=94 ., 4pm/m°C
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Tempersture (°C)
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Fig. 25 - TMA plot for Vectra 15% mineral fill

Fils: BRA-TMASS.90
Size: 3.0820 mm T M A Operator: ANT
Method: 40R, 300 Aun Date: 09/13/9% 09: 48
Comment: 106 LOAD, MACRO
4
3_
S
[
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H
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Fig. 26 - TMA plot for Verton 50% long glass
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Sample: VERTON RF-~700-12-MS AUN 2 T M File: BRA-TMABS.88
Size: 3.4470 mm A OCperstor: RAWT

Methoo: 40R, 300 Run Oste: 09/13/8%1 08:40
CO?;M: 106 LOAD, MACRO

1

2.04

1.5

Dimension Change (X}

80.00°C
=81 . 4um/m°C

20 40 ™) [ 100 120 140 160 180 200
Temperaturs (°C} TMA V2.1A OuPont 9900

Fig. 27 - TMA plot for Verton 60% long glass

Dynamic Mechanical Analysis Results

The dynamic mechanical properties of the candidate materials were
evaluated with the use of a DuPont model 983 dynamic mechanical analyzer
(DMA). The oscillation was fixed at 1 Hz, the oscillation amplitude was 0.1 mm, and
the sample length was about 20 mm. The data was collected from room
temperature to an upper limit at which no oscillation could be maintained or to
300°C. The results of this analysis are presented in Figs. 28 through 38.

The flexural modulus values (E') presented in Fig. 28 offer a good relative
comparison between the candidate materials. As was verified with the tensile
modulus, there is a direct correlation between percent reinforcement and flexural
modulus. The 60% glass-loaded materials had a higher modulus than the
corresponding 40% or 50% loaded versions. The Vectra A-515 which contains only a
mineral filter had the lowest E' of the materials tested.

The peak flexural loss modulus (peak E") values shown in Fig. 31 again
illustrate the correspondence of high glass loading with decreased resiliency. Vectra
A-515 and Ultem 2300 presented the highest E", and therefore the greatest degree of
“lossy” behavior.
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Fig. 32 ~ DMA plot for Celstran 60% long glass
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Fig. 33 - DMA plot for Isoplast 40% long glass
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Fig. 34 - DMA plot for Isoplast 60% long glass
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Fig. 35 - DMA plot for Ultem 2300 30% glass
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Fig. 36 - DMA plot for Vectra 15% mineral fill
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Fig. 37 - DMA plot for Verton 50% long glass
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Fig. 38 - DMA plot for Verton 60% long glass

Figure 29 compares the tan delta (ratio of lost to stored energy) values
obtained during the DMA analysis. Vectra A-515 produced the highest tan delta of
the materials tested. The highly reinforced nylons are grouped together, having the
next highest tan deltas, followed by the Isoplast materials and Ultem 2300. The
ranking of these materials, with higher tan deltas indicative of lossy properties,
corresponds well with the toughness and impact strength findings. In other words, -
a high impact strength and degree of toughness are predictable from a high tan delta
value.

The percent change in flexural modulus as a function of temperature is
depicted in Fig. 30. The Isoplast compounds were most affected by elevated tempera-
ture, displaying a reduction in modulus above 80% from a range of 25 to 125°C. The
nylon materials exhibited a fair degree of temperature resistance under the same
conditions with a loss of 25 to 30% in flexural modulus. The relatively temperature-
resistant Ultem 2300 had the best performance here with a loss of less than 10%.

Pultruded Rod Tensile Tests
Methods used to fixture the pultruded rod tensile specimens were examined.

A sample of 0.318-cm (0.125 in) diam pultruded nylon 12/fiber glass was obtained for
tensile testing. Several clamping techniques were attempted with limited success.
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In all cases the rod failed within the clamping jaw. Despite these problems, tensile
strengths of 483 MPa (70 ksi) were recorded.

FINITE ELEMENT ANALYSIS

The finite element analysis (FEA) has consisted of performing a static weight
finite element stress analysis and a preliminary explosive shock analysis on the
unmodified TR-317 standard bracket. The TR-317 standard bracket has since been
modified for impact resistance and the FEA will be repeated n the modified design.

Unmodified TR-317 Standard Bracket Static Weight Stress Analysis

Figure 39 shows a 3-D view of the unmodified TR-317 standard bracket finite
element model. The static weight analysis of the TR-317 bracket used material
properties for a representative non-metallic material. The non-metallic material
used for this analysis was Ultem 2300 with the following properties:

Modulus Of Elasticity: 11,720 MPa (1.7E+6 psi)
Poisson’s Ratio: 0.38
Density: 1662 kg/cu m (0.06 Ibm per cu in)

The static forces applied to the bracket are due to the weight of the transducer
acting on the bracket at various orientations. It was determined that the worst static
weight load is applied with the transducer oriented in the horizontal position. For
this reason, only the horizontal load case was executed. Figure 39 shows the
orientation of ihe static forces applied to the finite element model. The transducer
mass used for this analysis was 27 kg (60 1bm).

The static weight finite element stress analysis results for the Al-Br and non-
metallic material are summarized in Table 4. The non-metallic material shows a
significant increase in the X direction deflection and significant increases in stress
levels for all Principal Stress directions. Figures 40 through 43 show Principal Stress
1 and deflection contour plots for the Al-Br and non-metallic materials. The
contours on the stress and deflection plots are shown as lines identified by capital
letters (A, B, C, D). The highest levels of positive (tensile) stress or deflection are
shown at the D contours. The corresponding levels of the contours are shown in
the key to the right of the plot. DMX refers to the maximum deflection found on
the plot. SMN and SMX refer to the minimum and maximum stress values found
on the plot. A comparison of the Principal Stress 1 contour plots for Al-Br and non-
metallic materials indicate that the highest tensile static weight stresses occur at the
point where the bolt shaft joins the bracket shoulder for both the Al-Br and non-
metallic materials.

47




TIMS, THOMPSON, THORNTON and MUSKOPF

Peo] 3y8jam dneys Surmoys jaxoeiq paepueys LI€-UL pPatjIpowun

NI0OIH- 3S103ud
= JZu

e JdAM

e XN
€'C=1SIONn

F= A2

To AA

e AX

HNN 3dAL
SIN3W3N3 Ld3Yd
¥ "ON 107

- 70 82 9%

1667 €7 HBYW
vr'b  SASNY

3O [2powr JudWAd Aruy AnjdwwiAs jrey auQ - 6¢ “Big

13)0VH8 OUYONVLS (TEWL

solusy

Hoyg
og

11oys yjoq jo sepou
10jU02 19 pejdde 62104

opinoys




NRL Memorandum Report 6969

9¢CSI0

‘[EIUOZUIO ST J3onpsuel], ‘wq[ 09 JO SSeN I3dnpsuel] dneig :3se)) peo]

€647 165°L 0g9- 505 29z- 261G €80°0 00€Z waNN
1v9'1- A4 €81- 0S8 T6- 9181 21000 qq-1v
uoissardwo)| uorsuajy, |uorssaadwio)| uosuad] |uogssarxdwio)| uorsUIL
(u1)
(1sd) (1sd) (1sd) uopayaq
€ OIS ¢ OIS 1 OIS uopang X Teudje N
€ ssang aydpunyg g ssang adpuuy 1 ssang ajdpung wnwxXep

Arewuns sisAjeue ssans JS1am dne)s JudwA[2 ATuly RORIq LI€-UL - ¥ 2[qeL

49




TIMS, THOMPSON, THORNTON and MUSKOPF

E0le= O
(9= 9
cOg 0E8=
}198°'p61= v
N30QIH 3S1334d
A YA |

= JAM

F= XM
E'C=1lSIOx

tw AZ

I=  AA

t=  AX

0G9E€=aXNWS
Ieve= XWS
b8’ 658-=BNWS
VI ECT~-= NKWS
€(8200 0= XWO
(9AV) 1918
T=4y3l1
I=d31S
SS34lS ¥1S0d
c "ON 107d
¥e e 9}
1667 SV HVW
VPP SASNY

10{d 1noyuod (1 Jig) 1 ssanys fedpung - op 91y

LINIVUB QUVONVLS WE-v LITEWL

50




NRL Memorandum Report 6969

€0-30G€E ' Q~=
690100 ' 0~=
L8LY00 ' O~=
906200 ' 0~=
N30QIH 3S1034d
c=  JIH

c=  JAM

Te XM

€ 'C=1SIOx

Is  AZ

Te AA

Te  AX

<@OQ

S0-3968° 0= XWS
698200 0-= NHWS
€.48200°'0= XWO
veo19o 0

xn

T=d31l

I=d31S

S$S34lS 11s0d

| ‘ON 107d
9t :9¢ 9}

1661 21 HVW
VP'v SASNY

uonpap X uf jojd uondapaQ - Iv 814

1350vH8 QUYONVLS HB-~V LTEHL

-
-

51




TIMS, THOMPSON, THORNTON and MUSKOPF

PiGh=
0GIE=
M=YAT
g€ 0v=
NAQOIN 3SI1234d
en  d4Z%

e=  dAM

T XN
E'C=1SIOx

Pm  AZ

e AA

F=  AX

<moOa

LS6L=BXWS
(61S= XWS

P90C~=BNWS

PP6’ 192~= NWS

428280 0= XWQ
(9AY) t191S

_ P=y3Ll

t=d3ls

$534lS 11S0d

c "ON 107d
vy vE ‘6

1661 21 nr
Vr'vr  SASNY

jo1d 1nojuod (1 1) 1 ssans redpunyg - zp 31y

13%0VH8 QUVONYLS OITIVI3W-NON (TE-HL

1N
B
' |~
/]
] £FY
\ P =
~ A T
/ // \V _ \./\/ (?4 Y 4 2
“\ _ )il m\\

52




NRL Memorandum Report 6969

801010 ' 0~=
66L0EQ ' O~w
6v1G0°0~m=
8120 0== v
N300IH 3SI03Hd
g= JdIx

C=  dAx

fw  dX%
€'2=1SION

Is  AZ

T= AA

T  AX

o0

€0-3LEC 0= XNWS

926280 °'0~= NWS

{28280 0= XWQ

vao19 a

xn

F=43L1

I=d3lS

$S3ULS t1S0d

4 “ON 107d
GC €EE 6

1661 2! anr
V'b  SASNV

uonpaxp X ui joid uondapyaqg ~ ¢y *S14

13X0VUE8 QYVONVLS JITIVLI3IW-NON LTE-HL

53




TIMS, THOMPSON, THORNTON and MUSKOPF

Although the stress levels for the non-metallic material bracket show a large
increase (maximum tensile stress of 35.9 MPa (5.2 ksi)) over the Al-Br material, it
should be emphasized that they are still well below the minimum ultimate tensile
strength 168.9 MPa (24.5 ksi) of the non-metallic materials. The static analysis
results indicate that both the Al-Br and the non-metallic materials perform well
under static weight loading. The Al-Br material experiences a maximum tensile
stress of 12.4 MPa (1.8 ksi) and has an ultimate tensile strength of 510 MPa (74 ksi)
which results in a ultimate factor of safety of approximately 41. The non-metallic
material experiences a maximum tensile stress of 35.9 MPa (5.2 ksi) and has an
ultimate tensile strength of 168.9 MPa (24.5 ksi) which results in an ultimate factor
of safety of 4.7. The increase in the amount of deflection under static load that the
non-metallic material exiibits may be of some concern however. The non-metallic
material exhibits a maximum deflection of 2 mm (0.08 in) vs 0.025 mm (0.001 in) for
Al-Br material.

Unmodified TR-317 Standard Bracket Preliminary Explosive Shock Analysis

The preliminary explosive shock analysis consisted of a modal analysis to
determine the natural frequencies of the bracket and a quasistatic stress analysis
using “best guess” estimates of dynamic material properties. It was felt that a
quasistatic stress analysis would provide adequate comparison data given the “best
guess” estimates used for this analysis.

The static model of the TR-317 bracket described above was modified for the
preliminary modal analysis by distributing mass elements along the bolt shaft to
represent the transducer mass attached to the bracket. The bracket post was allowed
to vibrate freely and no attempt was made to model the transducer constraints on
the bolt shaft for this preliminary analysis. The model was executed with a fixed
mount for both the Al-Br and non-metallic materials. The fixed mount was
represented by constraining the nodes around the i.d. of the flange hole from
movement in all three directions. The model was then executed with a shock
isolation mount for both the Al-Br and non-metallic materials. The shock isolation
mount was represented by placing spring elements from a fixed nr ~ at the center of
the flange hole to the nodes around the i.d. of the flange hole.

Table 5 presents the results from the preliminary modal analysis. The natural
frequencies for the first three modes of vibration are shown for the fixed mount and
shock isolation mount for both materials. A comparison of the Al-Br material to
the non-metallic material shows that the Al-Br bracket has higher natural
frequencies than the non-metallic bracket. This is expected since the Al-Br material
has a much higher modulus which results in a higher stiffness. Also as expected,
the use of the rubber shock isolation washers drastically reduces the natural
frequencies of the bracket.
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Unmodified TR-317 Standard Bracket Preliminary Explosive Shock Stress Analysis

The TR-317 static stress model was used to perform a prelumnary quasistatic
explosive shock stress analysis. Figure 44 shows a plot of pressure vs time measured
by a pressure gauge located on the test platform at the Hi-Test explosive shock test
facility in Arvonia, VA. This plot is actual data generated during Shot #1 of the
MIL-5-901-D explosive shock test series. The peak overpressure is approximately
22.1 MPa (3.2 ksi). This instantaneous explosive shock peak overpressure was
applied to the static bracket model as a static force acting on the bolt shaft through
the nut. This equivalent force was determined by multiplying the overpressure by
the area of the face of the transducer headmass and dividing by the number of
bracket posts (4). Figure 45 shows that this applied force is distributed around the
circumference of the shaft and acts in the positive Z direction. The force acts to try
and pull the transducer and nut off of the bracket post. Since this was a static
analysis the bracket was assumed to have a fixed mount at the flange mounting
hole. This model was executed using both Al-Br and non-metallic material

properties.

Table 6 presents a summary of the preliminary quasistatic explosive shock
stress analysis results. Extremely high instantaneous stress and deflection values are
found for both material cases. These stress and deflection values have no absolute
meaning since they cannot be compared to material yield or ultimate strengths.
However, these values can be used as a relative comparison of the two materials.
Both materials experience about the same level of stresses in each direction, but, as
in the static weight analysis case, the non-metallic material experiences substantially
more deflection than the Al-Br material. The quasistatic analysis results also pro-
vide insight into where the highest stresses occur on the bracket due to explosive
shock loading. Figure 46 is the stress contour plot in the X direction and Fig. 47 is
the deflection plot in the Z direction for the Al-Br material. Figures 48 and 49 pre-
sent the same results for the non-metallic material. The maximum X direction
tensile stresses occur on the back surface of the flange at the mounting hole (D con-
tour lines) for both materials. ‘A comparison of the deflection plots for each material
indicates that they deform in a similar manner except that the non-metallic material
experiences an order of magnitude increase in deflection over the Al-Br material.
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BRACKET MOLD DESIGN

Figure 50 is a part drawing of the unmodified TR-317 standard nonmetallic
bracket. The unmodified TR-317 standard bracket injection-molded, shown in Fig.
51, was designed from the part drawing with the following features:

* Conversion of thread dimensions from 24 tpi fine, used in the aluminum-
bronze bracket, to 16 tpi allowing for more compatibility with commonly
available composite nuts.

* Incorporation of convertible thread insert cavities permitting changes in
thread dimensions necessary for various materials.

® An altered bolt-shoulder buildup eliminating the fiberglass washer used
on the aluminum-bronze bracket.

¢ Incorporation of a 2.4 mm (0.095 in) injection gate for minimization of
long-fiber degradation.

¢ Attachment slots for placement of pultruded rods.

Figures 52 and 53 are photographs of the unmodified TR-317 standard bracket
mold.

A mold flow analysis was performed by constructing a model of the TR-317
non-metallic bracket using the MOLDFLOW Analysis Program. The mold flow
model is based on the mold drawing shown in Fig. 51. Figure 54 is a contour plot
showing the mold fill time. The progression of contours represent the material
front as it moves through the mold as a function of time. This plot indicates that
the fan gate will provide adequate gating and allow for good flow through the mold.
Figure 55 shows the orientation of the mold flow angles at the instant of fill
providing an indication of the fiber orientation in the part. If the glass fibers do
indeed orient themselves as indicated, then the post should gain added strength in
the axial direction. Figure 56 shows the part temperature during molding. The rise
in temperature from the center of the post to the end of the post is attributed to
frictional heating as.the material “shoots” down the.post.

Molding Results

Fifty unmodified TR-317 standard brackets have been molded with the
following materials: Ultem 2300, Vectra A-515, Isoplast 101 40% long glass, and
Isoplast 101 60% lcug glass. Surface appearance of the molded parts is excellent. In
addition, one bracket was produced using Ultem 2300 with a carbon fiber pultruded
rod in order to determine flow characteristics of the resin around the rod. The
results indicate good flow properties with no voids observed. Figure 57 shows a
view of the unmodified molded brackets produced and an Al-Br bracket. Figure 58
shows a view of the Ultem 2300 bracket with pultruded rod next to an Al-Br bracket.
Figures 59 and 60 allow a direct comparison between an unmodified molded bracket
(Isoplast 60% long glass) and an Al-Br bracket. Note the bolt shoulder build up and
the coarse threads used on the molded bracket.




NRL Memorandum Report 6969

Suymeap uBisap 3a5de1q paepuejs L1€-YL PAyIpowsun ~ 05 814

672 SIE’S

osZ’

(dAL) ¥EO°Y

€372 OYIUHL
vZ-INN 91-9C

§d2Z vI0
HONIHW OL oS¥ U3:MMYHD

\E I EHID _
1 N
___
| .
32 / [~ 38 4
¢4349) 086" CaAL)
€20y
L, " W os1's
| P S
_
N-Iu
-0RL°Y
020°¥022" 018° 24
08G‘C
i LY S 4
£00° ¥6L0" F. . H o5t @
r Y=o ———= =
085" @
£00°¥eLL

65




TIMS, THOMPSON, THORNTON and MUSKOPF

1
Si0m Wi bilng Sarsa) diberg ey o
coup ‘prog-ajyey B
o Cad
ol
e oy e 77 T I S ey — \J.
#f G O L O
L] g
—_— 4”« r o J.
" ~. l.’l./v_ /J - -t -, pso 0
- ..r"‘. T - -t
w’“ﬂ\ ‘ .ﬂ. g e .. de ..‘.. - . "t
b . mv @ &R )
7 C OIS, WA I L44.




NRL Memorandum Report 6969

i
¢
i
H
i

Fig. 53 - Close up of TR-317 bracket injection mold

67




TIMS, THOMPSON, THORNTON and MUSKOPF

00€Z WALTIN

= TVIYIALVYA

(59s) 3wy [[Y PIOW

s ‘314

S DA b §

et BB L e

68




11 Jo Juejsui je safue moy o - S “S1d

00€Z RALIN = TVIYIALYR

NRL Memorandum Report 6969
69




TIMS, THOMPSON, THORNTON and MUSKOPF

(c00¥ Jo 21njeradurd) prow penrur) Surpjour Suunp ammjeradway yreq - 95 Sy

00€Z WALTA = TYIYILYW

id

AR RIMAMESINIL o N THOvE

1WRE 2 9BB" 9LE

70




NRL Memorandum Report 6969

RPN S faangl

b M minora BRenst Utem 2300
with
Rdevded Red

Fig. 58 - Close up view of Al-Br bracket and
Ultem 2300 bracket with pultruded rod inserts
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Fig. 60 — Close up view of Al-Br bracket and Isoplast molded bracket
(note additional shoulder material and coarse threads on Isoplast bracket)
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Processing parameters to mold the TR-317 standard brackets are summarized

in Table 7.
Table 7 - Injection Molding Process Parameters
Processing Parameters Ultem 2300 Isoplast 101 | Vectra A-515

Barrel Temperature 343-382°C 232-260°C 271-188°C
Mold Set Temperature 104°C 79°C 82°C
Pressures

Boost 1,500 psi 1,250 psi 1,100 psi

Hold 1,200 psi 1,200 psi 1,000 psi
Cycle Time 68.5 sec 64 sec 67 sec

TR-317 Standard Bracket Design Modified For Impact Resistance

First-article impact tests were run on the molded TR-317 standard non-
metallic brackets. Results from these impact tests revealed a possible weakness in
the bracket design. (See the ITM test section.) The non-metallic TR-317 standard
bracket design was modified for increased impact resistance by strengthening the
flange area of the bracket. This strengthening was achieved by adding material to
the area where the two flanges are attached. Figure 61 shows a part drawing of the
impact modified non-metallic TR-317 standard bracket. These design changes were
incorporated into the TR-317 injection-mold. Figure 62 shows the impact modified
mold design drawing. Impact modified brackets were molded using Isoplast and
Vectra materials for use in the explosive shock test. Figure 63 and Fig. 64 provide
comparison views of the unmodified and impact modified TR-317 standard
brackets.

FIRST-ARTICLE TESTING

First-article testing of the prototype non-metallic brackets consists of four
types of tests: Impact Test Machine (ITM) testing, explosive shock testing, creep
testing, and accelerated life testing (ALT). To date, ITM testing has been performed
on the unmodified non-metallic and Al-Br TR-317 standard brackets and explosive
shock testing has been performed on the impact modified non-metallic and Al-Br
TR-317 standard brackets. The results of these tests are discussed below. Long-term
creep tests and ALT have not started yet. ITM tests showed that three
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Strengthened
TR317
Standard Unmodified
Bracket TR-317
Standard
Bracket
Redesigned
Section for
impact
Resistance

Fig. 63 - Side view of unmodified and impact modified TR-317 standard brackets

Strengthened
TR-317 Unmodii
Standard 1-3317 lod
BfaCket standa{d
Bracket
Redesigned
Section for
Impact
Resistance

Fig. 64 - Top view of unmodified and impact modified TR-317 standard brackets
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resin-filler material systems, Isoplast 40% long glass, Isoplast 60% long glass, and
Vectra with 15% mineral filler, were the most impact resistant. The explosive shock
test confirmed the high impact strenth of each of these materials since all survived
the test with little or no visible damage.

Impact Test Machine (ITM) Testing

Figure 65 is a schematic drawing of the impact testing machine developed to
determine gross resistance to impact forces and to provide estimates of damping
factors as inputs for the finite element modeling. The ITM uses a 22.7 kg (50 1bm)
mass suspended on a 1.7 m (5.54 ft), 9.6 kg (21.2 Ibm), swing arm to achieve impact
velocities ranging from 2.3 m/s (7.5 ft/s) to 5.6 m/s (18.5 ft/s). This range of impact
velocities is sufficient to damage the current Al-Br TR-317 bracket, with damage
initiation occurring at 3.6 m/s (11.7 ft/s), and severe damage accumulation at 3.8
m/s (12.5 ft/s). The ITM is patterned after the MIL-901C test machine with
adaptation for the transducer application. The transducer and bracket are installed
in a floor mount fixture which is, in turn, bolted to the foundation. The hammer is
allowed to strike the face of the transducer headmass from a predetermined height
through the use of a height adjustment bar. The ITM data acquisition system
consists of two shock accelerometers, two signal couplers, and a high-speed A/D
board installed in a 386 computer. The Labtech Notebook data acquisition software
package is used to collect accelerometer data at high speed and perform an FFT on
the collected data. The accelerometers are installed on the back of the hammer mass
and on the top bracket.

Figure 66 is a photograph of the test machine in operation, and Fig. 67 is a
photograph of the pendulum arm just prior to impact. Figures 68 and 69 show the
shock signature of an ITM run with the Al-Br bracket at an impact velocity of 3 m/s
(9.9 ft/s). Peak hammer accelerations from the bracket saw approximately 340 g's.
Figures 70 and 71 show an example of the Vectra A-515 bracket material impact
signatures at position 6 which attains an impact velocity of 3.6 m/s (11.7 ft/s).

It is tempting to compare the explosive shock test conditions to those of the
ITM. Strictly speaking, this comparison can only be approximate because an actual
explosive shock test includes the dual effects of the pressure shock wave and the
inertial motion caused by the expanding gas bubble. The ITM can only emulate the
inertial effect which is a major function in an explosive shock test. As a bench mark
the Al-Br brackets of the current design are heavily damaged at an impact velocity of
roughly 3.9 m/s (12.7 ft/s), but these brackets survive explosive shock testing
essentially unscathed. The inertial motion vertical kickoff velocity of the barge at
the Hunter’s Point Facility was 3.3 m/s (10.7 ft/s), while the equivalent measure for
the ITM impact velocity ranges form 2.3 m/s (7.5 ft/s) to 5.6 m/s (18.5 ft/s).

The ITM has proven to be an excellent initial screening device to determine
the most impact-resistant materials for explosive shock testing. Cumulative impact
damage assessment tests were performed on Al-Br and unmodified non-metallic

77

S




TIMS, THCMPSON, THORNTON and MUSKOPF

wajs£s uopisinboe ejep pue aupyoew Suyysay pedurs jo uoyensnyy ~ 59 Vi

ANNOW HO0O0T4 L3XNOVHE H3IONASNVYHL

NOILYITIVLISNI XJOHS
13%J3vu8 ¥3INASNVHL LIE-NL

A_u.{:ou AYNOIS SYILINOYINIIDY xuozmy

Hv8 LNINLSNFQY
LHOI3H ISVII3IN

Nid 3SV3I3¥ NYY HINWVYH S

SSVYW
HINNYH
QNNOd 09
N3I1SAS ONISSIO0Nd ONV
F— NOILSINOOY VIVO LN3QISIY <!
—ag- H1IM H31NdWNOD 98¢ ,
S s.
rl
W
. 3¥NLINULS
] 1¥0ddNS
HIANNVYH
00000 [~
o0Qonn
Dooao |~




NRL Memorandum Report 6969

Fig. 66 — ITM in operation

Fig. 67 - ITM hammer just prior to impact.
Note accelerometer leads on hammer of bracket.
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ITM AIBr IMPACT BRACKET AT 9.9 fps

400

200- .
1 |

-100- !

200

ACCELERATION (g's)

O 20 40 60 80 100 120 140 160 180 200
TIME (1/4096 SECONDS PER UNIT)

Fig. 68 ~ Shock signature for Al-Br bracket at impact velocity of 9.9 ft/s

IT™ AIBr IMPACT HAMMER AT 9.9 fpe

0O 20 40 60 80 100 120 140 160 180 200
TIME (1/4096 SECONDS PER UNIT)
Fig. 69 ~ Shock signature for the hammer in the Al-Br bracket test at 9.9 ft/s
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TM VECTRA IMPACT BRACKET AT 11.7 fps
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Fig. 70 — Shock signature for Vectra A-515 bracket at impact velocity of 11.7 ft/s

ITM VECTRA IMPACT HAMMER AT 11.7 fps

O 20 40 60 80 100 120 140 160 180 200
TIME (1/4096 SECONDS PER UNI)
Fig. 71 - Shock signature for the hammer in the Vectra A-515 bracket test at 117 ft/s
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TR-317 standard brackets. The cumulative impact tests are performed by releasing
the ITM hammer from increasingly higher height positions until failure of the
bracket or the maximum height position on the ITM is reached. Table 8 presents the
results of the cumulative impact tests on the TR-317 standard brackets with the
impact occurring on the transducer headmass. This impact orientation represents
the explosive shock experienced by the brackets in an actual submarine sonar dome
installation. Table 9 shows the same results with the impact occurring on the tail
assembly of the transducer. This impact orientation represents the explosive shock
experienced by the brackets during a MIL-S-901-D explosive shock test. The results
from these tests show that the Isoplast and Vectra materials are the most impact
resistant and were chosen for explosive shock testing. Note that the MIL-S-901-D
explosive shock test orientation (impact on transducer tail assembly) is a more
severe impact test of the TR-317 brackets than installation in a submarine sonar
dome. Figures 72 and 73 show cumulative impact damage sustained by the Isoplast
material with 40% glass. Figures 74 and 75 show impact damage sustained by the
60% glass Isoplast. Figures 76 and 77 document the impact damage sustained by the
Vectra material. Figure 78 shows a comparison of the cumulative impact damage
on the Al-Br brackets with an untested bracket. Note the bending of the bracket
posts on the damaged bracket.

The ITM was developed to compare composite bracket shock resistance with
Al-Br bracket designs, to provide fully installed damping ratio estimates for finite
element model inputs, and to act as a platform for design verification and
improvement. A number of time domain data runs for the nonmetallic and Al-Br
brackets were obtained. Figures 79 to 82 are power spectra of both the Al-Br and the
Vectra A-515 bracket shock signatures at 3.6 m/s (11.7 ft/s) impact velocity. Note
that, in general, the resonant frequencies for shock excitation in the Al-Br bracket
are lower than those for the Vectra A-515, an expected result considering the 5:1
mass difference between the Al-Br and the Vectra A-515.
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Fig. 72 - Cumulative impact damage on Isoplast 40% glass unmodified TR-317
brackets (impact on transducer headmass)

Fig. 73 - Cumulative impact damage on Isoplast 40% glass unmodified TR-317
brackets (impact on transducer tail assembly)
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Fig. 74 - Cumulative impact damage on Isoplast 60% glass unmodified TR-317
brackets (impact on transducer headmass)

Fig. 75 ~ Cumulative impact damage on Isoplast 60% glass unmodified TR-317
brackets (impact on transducer tail assembly)
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Fig. 76 - Cumulative impact damage on Vectra 40% glass unmodified TR-317
brackets (impact on transducer headmass)

Fig. 77 - Cumulative impact damage on Vectra 40% glass unmodified TR-317
brackets (impact on transducer tail assembly)

87




TIMS, THOMPSON, THORNTON and MUSKOPF

Damaged g
Bracket

Fig. 78 - Comparison of cumulative impact damage on
Al-Br TR-317 bracket to untested bracket
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POWER SPECTRUM AlBr IMPACT 11.7 fps
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Fig. 79 - Power spectrum to 2000 Hz of Al-Br bracket at 11.7 ft/s impact velocity
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Fig. 80 - Power spectrum to 200 Hz of Al-Br bracket at 11.7 ft/s impact velocity
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POWER SPECTRUM VECTRA IMPACT 11.7 fps
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Fig. 81 — Power spectrum to 2000 Hz of Vectra A-515 bracket
at 11.7 ft/s impact velocity
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Fig. 82 - Power spectrum to 200 Hz of Vectra A-515 bracket
at 11.7 ft/s impact velocity
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Explosive Shock Test

The molded non-metallic standard TR-317 brackets modified for impact
resistance were subjected to underwater explosive shock testing per MIL-S-901-D at
the HI-Test explosive shock test facility. Figure 83 presents the explosive shock test
matrix used during this test. Three resin-filler material systems were chosen for the
test based on prior laboratory ITM impact testing; Isoplast with 40% long glass fibers,
Isoplast with 60% long glass fibers, and Vectra with 15% mineral filler. In addition,
some of the brackets were reinforced with pultruded glass-filled PEEK rod and with
steel rod. All of the non-metallic brackets were installed on the test fixture using
standard rubber shock isolation mounts torqued to 4.5 N-m (40 in-lbs). A pair of Al-
Br brackets was installed with rubber shock isolation mounts and another pair was
installed with a fixed mount, both torqued to 4.5 N-m (40 in-lbs). TR-317
transducers were installed on the brackets and the nuts were torqued to the specified
values provided in the test matrix. The non-metallic brackets used commercdially
available Isoplast nuts with 30% glass fibers and the Br brackets used Monel nuts.
Figure 84 shows the TR-317 test fixture mounted to the bottom of the barge. Figure
85 presents a close-up view of the TR-317 bracket installation on the test barge.

Figures 86 and 87 illustrate the explosive shock test progression for shot #4 at
the HI-Test explosive shock test facility. After each shot the barge was lifted out of
the water and a visual inspection was made of the test fixture. All of the non-
metallic brackets survived the test series. Initial visual examination after shot #4
showed no visible surface damage to any of the non-metallic brackets. A more
extensive visual examination was made at TRI/Austin. Figure 88 shows the
brackets after testing, laid out in the test matrix configuration. The only visible
damage to the non-metallic brackets was a surface crack on the Vectra brackets
located on the molding knit line formed at the holes in the bracket flange. See
Fig. 89. A portion of the rubber shock isolation grommet was pinched in the crack
indicating that the crack was opened up allowing the rubber to be pushed into the
crack and then closed rapidly trapping the rubber material. These surface cracks
appear to be present only in the hard liquid crystal polymer skin that forms during
the molding of the Vectra material. Since the cracks formed only at the knit line it
seems likely the cracking is due to a molding problem with the Vectra material. The
presence of these surface cracks are minor in nature and did not result in a part
failure.

Results from the explosive shock test indicate that the modified non-metallic
standard TR-317 brackets have passed the MIL-S-901-D explosive shock test.
Furthermore, the test results indicate that reinforcement of the TR-317 brackets with
pultruded or steel rod will not be necessary.
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Fig. 85 - Close-up view of TR-317 bracket installation on test barge
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s

Fig. 87 - End of explosive shock test shot #4 at the HI-Test shock test facility
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Fig. 88 — TR-317 brackets after explosive shock testing at
the HI-Test explosive shock test facility

Surface N
crack
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knit line
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hole

Fig. 89 - Example surface crack found on Vectra brackets
after explosive shock testing
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SUMMARY

Initial results indicate that all the objectives of the non-metallic bracket tasks
will be met. The non-metallic sonar transducer mounting bracket engineering
improvement program began in January 1991 and significant progress has been
made toward the program goals as summarized below:

Seven commercially available candidate materials were selected for
evaluation by performing a material selection analysis.

Tensile testing of the candidate materials has been completed for the four
test conditions: dry/room ambient temperature, dry-hot, wet-room
ambient temperature, and wet-hot.

Izod impact testing, ultimate toughness calculations, moisture absorption,
and TMA and DMA material testing of the candidate materials has been
completed.

Finite element models have been constructed of the unmodified TR-317
standard bracket to verify the ability of the non-metallic materials to
withstand operational and explosive shock loads. All static weight load
cases for the TR-317 bracket have been completed. Preliminary explosive
shock load cases have been executed for the unmodified TR-317 bracket.
Finite element analyses indicate that all of the candidate non-metallic
materials molded as TR-317 brackets possess the necessary strength to
support static weight loads.

A prototype injection-mold has been designed and built to produce
molded non-metallic TR-317 standard brackets for first article testing.
Approximately 250 test brackets have been molded to date.

An Impact Testing Machine has been designed and constructed to apply
impact loads to a complete TR-317 transducer and bracket installation.
This machine is capable of collecting accelerometer data to determine
damping properties for the finite element modeling and as a pass/fail test
for candidate non-metallic materials. Initial results from the impact
testing indicated that the most impact resistant non-metallic materials
would survive the Hi-Test explosive shock test.

Pultruded composite rod has been investigated and proven to be a viable
molded bracket reinforcement method.

Impact modified TR-317 standard brackets molded from Isoplast and
Vectra resin materials survived the MIL-S-901-D explosive shock test
without damage.

96




NRL Memorandum Report 6969

Results from preliminary tests on the molded non-metallic TR-317 standard
brackets indicate that the non-metallic brackets are a viable low cost replacement for
the current Al-Br brackets. The Al-Br brackets cost approximately $19 per standard
biacket and $30 per special bracket. Excluding development costs, the non-metallic
material bracket cost is approximately $10 per molded TR-317 standard bracket. This
cost is based on low volume production (100 parts per molding run). Low volume
material costs are approximately $600 per 100 parts, and molding and final
machining costs are approximately $400 per 100 parts. High volume production
runs should reduce the TR-317 standard bracket cost to well below $10 per part,
perhaps as low as $6 or $7.

The non-metallic brackets will also provide a substantial weight savings over
the current Al-Br brackets. The TR-317 standard Al-Br bracket weighs 450 g (1 Ibm).
The non-metallic bracket weighs approximately 136 g (0.3 lbm). Assuming that 2,400
TR-317 brackets (1,200 transducers) are installed on a boat, that translates into a
weight savings of 871 kg (1,920 Ibm) or almost 1 ton per boat. Additional weight
savings will be realized with the replacement of the current metallic nut with a
non-metallic fastener and by the elimination of four epoxy washers used in the
current Al-Br bracket installation.
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